
DEPARTMENT OF THE INTERIOR 

U.S. GEOLOGICAL SURVEY

National Petroleum Assessment

Eastern California

(Province 81A)

By Harry E. Cook1

Open-File Report 

87-450K

. Geological Survey, 345 Middlefield Rd., MS 999, Menlo Park, CA

This report is preliminary and has not been reviewed for conformity with U.S.

Geological Survey editorial standards and stratigraphic nomenclature.
Any use of trade names is for descriptive purposes only and does not imply 
endorsement by the USGS. 1987



INTRODUCTION 

Basin Location and Size

Province 81A encompasses about two-thirds of California, and is divided 

into nine geomorphic subprovinces (Figs. 1,2) following the general schemes of 

Norris and Webb (1976) and Scott (1983). To call this province a single basin 

is obviously a misnomer. These subprovinces collectively represent a collage 

of diverse basins and basin types that evolved in response to a number of 

sedimentologic and tectonic episodes along the western margin of North America 

(Fig. 3).

The Klamath Mountains and Coast Ranges subprovinces of Province 81A were 

originally called Province 902 in the 1983 USGS assessment (Scott, 1983). As 

these two subprovinces significantly increase the size of Province 81A, it is 

recommended that future assessment reports modify the province name "Eastern 

California" to some name that more accurately reflects the true geographic 

composition of Province 81A.

QUALITATIVE EVALUATION OF HYDROCARBONS

Within Province 81A the possibility of commercial accumulations of hydro 

carbons is very low, and no formal plays are identified. The only areas where 

hydrocarbon shows and/or abandoned wells exist are in the Modoc Plateau, Coast 

Ranges, and the Peninsula Ranges subprovinces. Of these three subprovinces 

the Modoc Plateau, although not formally identified as a play, is presently 

considered to be the most likely to contain commercial hydrocarbons. The 

basis for this guarded optimism is discussed under the subprevince section of 

this report.
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REGIONAL GEOLOGIC FRAMEWORK

This section will attempt to outline the regional structural setting and 

geologic history of the Cordillera, followed by a brief geologic description 

for each of the subprovinces in Province 81A. To gain a true perspective of 

the geologic evolution of California, one must look beyond its man-made bound 

aries into the Basin and Range Province of Nevada* The regional tectonics and 

stratigraphy of these two Cordilleran provinces have an intimate interwoven 

genesis that dates back to the Proterozoic (Figs. 3,4-6). Plate tectonic 

theory will be liberally used to understand the complex geologic history of 

the Cordillera. This theory appears to offer unique unifying insights into 

the origin of the diverse tectonic-sedimentologic regimes in these two 

adjacent provinces.

Five tectonic events shaped the western margin of North America in the 

vicinity of Province 81A and 83 (Fig. 5). Some of these events are confined 

to each respective province, but some events were of broader scale, and 

affected the entire western margin of North America simultaneously.

Event 1: Proterozoic Crystalline Basement

Strontium and neodymium isotopes have been used to define Precambrian 

crystalline basement of Proterozoic age. This continental crust is inferred 

to extend as far west as central Nevada (Fig. 7, ISr = 0.706) (Kistler, 1974; 

Farmer and DePaolo, 1983). Extensive metamorphism and intrusion of this base 

ment occurred between 1,650 and 1,750 Ma (King, 1969).
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Event 2: Late Precambrian Through Devonian  

Continental Rifting and Passive Margin Development

The Proterozoic continent was broken by a major rifting event near the 

end of the Precambrian (Figs. 8,9) (Stewart, 1972; Stewart and Suczek, 

1977). Until the end of the Devonian a passive continental margin comprised 

western North America from Alaska to southeastern California (Fig. 10) 

(Churkin, 1974; Cook and Taylor, 1975). This rifting and initial development 

of the Cordilleran miogeocline is not well dated directly, but stratigraphic 

backstripping indicates that rifting happened between 625 and 550 ma (Bond and 

Kominz, 1984). On the basis of sedimentologic and biostratigraphic analyses 

between Asia and western North America, Cook and Taylor (1975) established 

that this rifting event occurred no later than about 520 ma.

This passive continental margin became the site of 5,000 m of shoal-water 

carbonate platform and basinal sediments from the Cambrian through the 

Devonian (Figs. 11,12) (Cook and Taylor, 1983; Cook and Taylor, 1987).

Event 3: Late Devonian Through Triassic Terrane Accretion

Two major accretionary events occurred during the Late Devonian-Early 

Mississippian (Antler orogeny, Roberts et al., 1958; Speed, 1982, 1983), and 

the Permian-Triassic (Sonoma orogeny, Silberling and Roberts, 1962; Speed, 

1979, 1982, 1983) (Figs. 4,5,11). During the Antler orogeny the Roberts 

Mountains allochthon oceanic rocks were thrust eastward at least 100 km over 

the continental slope and platform margin carbonates. This event formed the 

Antler erogenic highlands and foreland basin (Figs. 4,11,13). Similarly, 

during the Sonoman orogeny, oceanic rocks in the Golconda allochthon
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(Figs. 4,11) were thrust eastward about 50-75 km over previously deformed 

continental-margin sediments (Fig. 11). The Sonoman orogeny, however, 

involved less crustal shortening than the Antler orogeny, and did not develop 

a foreland basin, as was the case during the Antler orogeny (Fig. 14).

The tectonic model that is commonly called upon to explain the distri 

bution of lithofacies in both orogenies is that of a normal polarity arc; the 

back-arc (inner-arc) basin develops as a normal-trapped marginal basin 

(Fig. 15). This model is basically a Japan sea-type (Mitchell and Reading, 

1969) orogen (i.e., a continent bordered by a marginal sea with a nearby arc 

offshore (Dickinson, 1977).

Beginning sometime in the Triassic, scattered plutons were being emplaced 

in eastern California (Fig. 16) (Speed, 1978a,b). Simultaneously, ophiolite 

complexes were developing in northern California, signaling the beginning of 

major subduction systems and batholithic intrusions that were to dominate the 

Cordillera later in the Mesozoic.

Event 4: Cretaceous-Eocene Andean-Type Continental Margin

In the Jurassic-Cretaceous the continental margin evolved into a setting 

similar to that of the modern Andes with eastward subduction beneath the con 

tinent (Fig. 18) (Hamilton, 1969, 1978; Allmendinger et al., 1987). The Cre 

taceous geology of northern and central California is dominated by three 

coeval complexes, now considered to be synchronous responses to subduction of 

the Pacific lithosphere beneath the North American continent (Hamilton, 

1978). In the east is the Sierran magmatic arc and batholiths (Fig. 17), in 

the center is the fore-arc (outer arc) basin into which the Great Valley 

sequence accumulated, and to the west in thrust contact beneath the Great
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Valley sequence is the chaotic Franciscan melange (Fig. 18). East of the 

Sierra Nevada batholith the Basin and Range Province was undergoing fluvial 

and lacustrine sedimentation and minor amounts of volcanic activity (Fig. 18). 

This Andean-type subduction was responsible for numerous thrust faults 

which telescoped sedimentary facies throughout much of the Cordillera. These 

thrusts are especially well exposed in the Basin and Range Province. The 

Sevier overthrust belt of Cretaceous to Eocene age was the largest of the 

Mesozoic thrust belts, and extended from southern Nevada northward into Canada 

(Fig. 4). Armstrong (1968) estimated about 100 km of eastward crustal short 

ening associated with the Sevier system.

Event 5: Oligocene-Recent Continental Extension

Extensional tectonics has characterized the western United States since 

at least the mid-Oligocene (Fig. 19). During continental extension two dif 

ferent tectonic interactions occurred along the North American plate to the 

west (Zoback et al., 1981). The earlier extension occurred during eastward 

subduction, and revived arc volcanism. This extension is characterized by 

low-angle normal faults (Allmendinger, 1987). These faults may have been the 

result of gravitational collapse of a tectonically thickened crust (Coney and 

Harms, 1984). In contrast, the typical basin and range morphology is charac 

terized by evenly spaced mountain blocks, bounded by high-angle normal 

faults. These faults were produced during east-southeast extension that 

began 10 ma (Zoback et al., 1981). Several models exist to explain this 

later intracontinental extension (Fig. 20) (Allmendinger, 1987).

Continental extension allowed massive volumes of siliceous ash-flow tuffs 

(ignimbrites) to extrude and cover much of the Basin and Range Province to
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Figure/?0.SlmpHfied models of Intracontinenfal extension. 
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thicknesses up to 10,000 feet (3,000 m) (Figs. 21,22,23) (Cook, 1965; Cook, 

1968). These fractured ash-flow tuffs (ignimbrites) form many of the hydro 

carbon reservoirs in eastern Nevada (Bortz and Murray, 1979; Bortz, 1983, 

1985).

During this same period of time large masses of marine graywacke, 

mudstones, and oceanic carbonate seamounts, that formed above a subduction 

zone, were being tectonically accreted on the western margin of northern 

California (Fig. 18) (Tarduno et al., 1986).

CALIFORNIA SUBPROVINCES 

Sierra Nevada

This area is dominated by Mesozoic calc-alkalic plutonic rocks in addi 

tion to great thicknesses of metamorphosed Paleozoic and Mesozoic sediments 

(Figs. 3,24). This subprovince is not considered to have any hydrocarbon 

potential. The oldest known Sierran rocks are Ordovician metasediments. In 

places up to 50,000 feet (15,000 m) of hornfels, chert, marble, slate, and 

quartzite document Paleozoic sedimentation from Ordovician through the Permian 

(Norris and Webb, 1976). Triassic and Jurassic rocks consist of thousands of 

feet of metavolcanics and sedimentary rocks.

The Nevadan orogeny of Kimmeridgian age (Late Jurassic), ca. 150 Ma, 

involved the collision of a Pacific island arc with the continental margin 

arc. Magmatic activity ceased in both arcs when these two opposing arc-srench 

systems collided (Fig. 25) (Schweickert and Cowan, 1975). Later in the Creta 

ceous the main masses of the Sierran batholiths were emplaced. It was upon 

these batholiths, arc complexes, and Paleozoic sediments that the eastern
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margins of the Cretaceous Great Valley sequence onlapped unconformably 

(Figs. 18,25).

Klamath Mountains

This area is not considered to have a commercial hydrocarbon potential. 

The overall lithofacies and structural patterns suggest that the Klamath 

Mountains subprovince consists of slices of oceanic crust (ophiolites), 

island-arc volcanics, outer-arc and/or inter-arc basinal sediments, and 

displaced terranes, all of which have been accreted to the continental margin 

(Fig. 13) (Irwin, 1977).

Mesozoic pelagic limestones are imbedded within Paleozoic marine sili 

ciclastics. These exotic limestones may be displaced limestone terranes from 

equatorial latitudes similar to the ones studied by Tarduno et al. (1986) in 

the Northern Coast Ranges of California.

Cascade Range-Modoc Plateau

The oldest sedimentary rocks exposed in this subprovince are the Late 

Cretaceous marine siliciclastics of the Hornbrook Formation (Nilsen, 1984). 

Hornbrook sediments are underlain by Paleozoic and Mesozoic metamorphic and 

plutonic rocks in the Klamath Mountains, and unconformably(?) overlain by 

nonmarine Tertiary sediments (Figs. 26-29). Cenozoic pyroclastics and 

volcanic flow rocks, ranging from Oligocene to Holocene, cover most of this 

subprovince to thicknesses up to 10,000 feet (3,000 m). There is considered 

to be only a remote chance for commercial quantities of hydrocarbons in this 

area; nevertheless, the following geologic framework related to hydrocarbons, 

is included.
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During the Late Cretaceous the Modoc Plateau area was part of a marine 

basin within which the Hornbrook Formation was deposited. This basin may have 

originally connected with the subsurface Ochoco basin of central Oregon to 

form a forearc basin west of the Late Cretaceous magmatic arc in the Idaho 

batholith (Figs. 18,30). This basin was bounded on the west by the Klamath 

Mountains of northern California and southern Oregon, on the southeast by the 

Sierra Nevada, and on the east by the Idaho Batholith. To the south, the 

basin may have been connected with the Great Valley forearc basin 

(Figs. 18,30). The Upper Cretaceous Hornbrook Formation is a deepening upward 

sequence which consists of about 4,000 feet (1,200 m) of nonmarine, shallow 

marine, and deep-marine slope and submarine fan siliciclastic facies (Fig. 27) 

(Nilsen, 1984).

Source-rock evaluations of samples collected from outcrops of the Horn- 

brook Formation indicate that they contain type III organic matter, and are, 

therefore, capable of generating mainly gas and little or no oil (Fig. 31) 

(Law et al., 1984). Vitrinite reflectance, Rock-Eval pyrolysis, extraction, 

and chromatograph data indicate these samples are immature to marginally 

mature with respect to the thermal maturation of gas (Law et al., 1984).

Potential reservoir rocks would include shoreline sands, offshore bar 

facies, and deep-water siliciclastic turbidites. However, whether or not 

these same facies, that outcrop discontinuously around the northwest margin of 

the basin, actually occur to the east at depth is not known. A fourth 

potential reservoir facies would be fractured andesite flows. Keighin and Law 

(1984) report measured helium porosities of 6.3 to 18.6 percent, and maximum 

permeabilities from .01 to 1.2 md in the Hornbrook sandstones. Both physical 

and chemical post-depositional processes have degraded the reservoir qualities 

of the sandstones. Overcompaction and a clayey matrix has reduced pore
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throats to less than 10 microns across for most of the analyzed sandstones 

(Keighin and Law, 1984).

Tectonic movements of the basement reflect a history of both compress- 

ional and tensional deformation related to late Mesozoic arc-trench, trans 

form, rift-basin motions, as well as to late Cenozoic basin and range faulting 

activity. Thus, a variety of structural traps could exist at depth, such as 

broad anticlines developed during compressional movements, and horst and 

graben structures that formed during extensional tectonics. Additionally, 

stratigraphic traps could exist.

Depth ranges for potential reservoir facies could be quite variable due 

to sedimentation pinchouts, as well as erosional pinchouts that are known to 

occur throughout this Late Cretaceous to Pleistocene sequence. For example, 

the Hornbrook could be buried as deep as 15,000 feet (4,500 m), or as was the 

case in a recent 1983 well in the northwestern part of the basin, the Horn- 

brook was encountered at 2,800 feet (850 m). This well is the only deep test 

in the basin. A wet gas or oil show may have been found at 3,700 feet 

(1,100 m) (Alldredge and Meigs, 1984). It terminated at 4,900 feet (1,470 m) 

in Paleozoic metamorphics. The well was plugged and abandoned in 1984.

Since 1983 geophysical activity has intensified in the area. Three other 

wells in the southeastern part of the Modoc Plateau drilled to 1,200 feet 

(360 m), and were completed as gas wells in Miocene sands. Flow rates of 

methane in these wells are 200-450 mcf, and maximum bottom-hole pressures are 

415 psi (Alldredge and Meigs, 1984).



Basin and Range Province

This area shares much of the same geologic history as that of the Basin 

and Range Province in Nevada (Figs. 14,18). Numerous granitic intrusives of 

probable Mesozoic age are found in California's basins and ranges 

(Figs. 14,16,17). These intrusives have intensely baked much of the Paleozoic 

marine sequences, and as a result, this province is considered to have very 

limited possibilities for commercial hydrocarbons.

Moj ave Desert

The Mojave Desert area has the same pre-Mesozoic geologic history as the 

Basin and Range and Sierra Nevada subprovinces. However, the Paleozoic and 

Mesozoic are not as well represented in the Moj ave Desert, nor are the sedi 

mentary sequences as thick as they are in the Sierra Nevada and Basin and 

Range Provinces (Norris and Webb, 1976). Cenozoic rocks appear throughout the 

Mojave Desert, and except for thin, restricted, Miocene marine sediments, 

deposition is nonmarine. Volcanic rocks interbedded with lake deposits and 

evaporites are widespread.

This subprovince has widespread evidence of Mesozoic plutonic activity, 

and this coupled with metamorphism, high geothermal gradients, and a nonmarine 

Cenozoic section makes the Mojave Desert very unattractive for commercial 

quantities of hydrocarbons.

10



Imperial Valley

Seemingly this area at first glance should offer good possibilities for 

commercial quantities of hydrocarbons. About 25 percent of the outcrops are 

marine siliciclastics with good reservoir characteristics, and potential 

source rocks. Also, there are significaint volumes of Cenozoic lacustrine 

strata that in Nevada, for example, make good source and reservoir rocks 

(Tarbet, 1971; Fouch, 1979a,b; Sandberg, 1983; Poole and Claypool 1984; Bortz, 

1985). In addition, the structure is comparable to structures which form 

traps for petroleum in the fields adjacent to the San Andreas fault in other 

parts of California (Tarbet, 1971).

Unfortunately, the Pliocene marine siliciclastics were deposited so fast 

that the ratio of organic to inorganic matter is very low. Also, the 

lacustrine beds were deposited in highly oxidizing freshwater lakes. Thus, 

the Cenozoic rocks appear to be deficient in good source rocks. A number of 

wells have evaluated the petroleum potential of the marine strata without any 

favorable results (Tarbet, 1971). In addition, the high-temperature Salton 

Sea geothermal system (i.e., the Salton Sea field has brine temperatures up to 

550°F (288°C) (Bilodeau, 1985)), which lies above a continental spreading 

zone, has severely altered the sediments. Also these high temperature brines 

have caused serious problems in hydrocarbon drilling operations.

A rather unique type of oil may exist in the area. As discussed by 

Tarbet (1971), a large volume of oil shale has been eroded from the Uinta 

basin, and transported down the Colorado River into the Imperial Valley. 

Natural distillation under the influence of the Salton Sea geothermal system 

could have produced large volumes of hydrocarbons. Other than this highly 

speculative source of oil, the possibility of obtaining commercial quantities 

of hydrocarbons appears to be very slight.



Peninsula Ranges

This area contains a thin marine (submarine fans) and nonmarine (fluvial) 

sequence of Cretaceous and Cenozoic siliciclastics that unconformably lap onto 

the Cretaceous southern California batholith and older metamorphic rocks (Gray 

et al., 1971). About 175 wildcats have been drilled in this subprovince, but 

evidence of hydrocarbons is virtually nonexistent. Two discoveries were 

reported prior to 1960, but both were noncommercial, and were abandoned after 

producing 4,000 barrels of oil and 11 mcf of gas (Scott, 1983).

Transverse Range

The part of the Transverse Range in Province 81A consists of Precambrian 

and Paleozoic metamorphic rocks and Mesozoic granitics (Norris and Webb, 

1976). This subprovince has a very low to zero hydrocarbon potential.

Coast Ranges

The dominant element of the Coast Range subprovince is the Jurassic- 

Tertiary Franciscan Complex. This complex can be divided into three major 

northwest-southeast-trending tectonic belts (Fig. 32) (Blake and Jones, 1978; 

Tarduno et al., 1986). Rocks in these belts are all marine, and represent a 

complex melange of oceanic crust and forearc and backarc sediments. These 

sediments were complexly intermixed during subduction, accretion, and strike- 

slip faulting processes along the continental margin (Tarduno et al., 1986). 

The Jurassic-Cretaceous section is considered nonprospective for hydrocarbon 

accumulations.

\i



^ S'^KA) Geofogk map of California showing the three major teoonk belts of Franciscan rods of the northern Coast Ranges that have been further 
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There are small, stratigraphically thin pods of Tertiary marine rocks 

that unconformably overly the chaotic Franciscan complex. These limited 

exposures locally have oil seeps. One field, the Petrolia field, produced 350 

barrels of oil in Miocene strata, but was abandoned. This subprovince is not 

considered prospective for commercial accumulations of hydrocarbons.
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